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1 Introduction

Cosmic rays are energetic particles that originate in space and our sun and collide with

particles as they transit our atmosphere. As these particles interact with the atmosphere

they generate a flux of particles that reach the earth’s surface. The interaction of these

high energy particles with electronics can induce soft errors (Ziegler & Lanford 1981,

Baumann 2005). A soft error is an undesired change in an electronic device’s state,

e.g. an unintentional state switch (bit flip) from 0 to 1, or vice versa, that does not

permanently impact the device’s functionality. At the Earth’s surface approximately 95%

of the particles capable of causing soft errors are energetic neutrons with the remainder

composed of protons and pions (Ziegler 1996).

When they occur in microprocessor systems, neutron-induced soft errors can lead

to crashes and silent data corruption (SDC) (Michalak, Harris, Hengartner, Takala &

Wender 2005, Constantinescu 2005, Ando, Kan, Tosaka, Takahisa & Hatanaka 2008,

Rao, Hong, Sanda, Ackaret, Barrera, Yanez, Mitra, Kellington & McBeth 2008, Sanda,

Kellington, Kudva, Kalla, McBeth, Ackaret, Lockwood, Schumann & Jones 2008, Hong,

Michalak, Graves, Ackaret & Rao 2009, Michalak, DuBois, Storlie, Rust, DuBois, Modl,

Quinn, Manuzzato & Blanchard 2011). SDC is the result of a soft error that neither gets

corrected nor causes a crash, but instead produces a computational result that is incor-

rect, without the system issuing any warnings or error messages. In high performance

computing (HPC) platforms used for scientific computation, such errors are of concern

since system crashes can increase application runtimes and SDC in scientific applica-

tions can result in erroneous scientific conclusions. In this study, accelerated neutron-

beam testing is used to estimate the frequencies of SDCs and of failures (crashes) in

Los Alamos National Laboratory’s (LANL) Roadrunner platform (Koch 2008), the first

Petaflop supercomputer (Meuer 2008), as well as the impact of certain factors on these

frequencies. There are two main contributions of this work: (i) the results of subjecting
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Roadrunner hardware in its field configuration to neutron-beam testing permit estima-

tion of the effect of key factors on the cosmic-ray-neutron-induced error (SDC or failure)

rate for the Roadrunner platform and (ii) a novel statistical approach for the analysis of

interval censored survival data with mixed effects and uncertainty on the interval end-

points, which is necessary for the analysis of these data, is developed. While some of the

results of this study have been presented to the electrical engineering and computer en-

gineering audiences (Michalak, DuBois, Storlie, Rust, DuBois, Modl, Quinn, Manuzzato

& Blanchard 2011, Michalak, DuBois, Storlie, Quinn, Rust, DuBois, Modl, Manuzzato

& Blanchard 2011), the focus here is on the statistical approach taken to answer the

relevant scientific questions.

1.1 Problem Description

This section presents the test methodology and setup, with a more detailed description

of the test setup and data collection technology provided in Michalak, DuBois, Storlie,

Rust, DuBois, Modl, Quinn, Manuzzato & Blanchard (2011).

Roadrunner includes 17 Connected Units, each with 180 Triblades (Koch 2008) used

for computation, so the susceptibility of Triblades to neutron-induced faults is of primary

interest. Thus, accelerated testing of Triblades was conducted in October 2009 by run-

ning various computational codes on these systems in a neutron flux (neutron intensity

in neutrons/cm2/sec) several orders of magnitude higher than that at the earth’s surface.

The testing was conducted at the Los Alamos Neutron Science Center (LANSCE) Irra-

diation of Chips and Electronics (ICE) House facility at LANL. Although the neutron

flux produced at the ICE house is much more intense, its energy spectrum approximates

that at the earth’s surface (Takala 2006).

Four Triblades (Koch 2008) were used in this study, but only three of the Triblades

are used in this analysis, since one of the Triblades (Triblade 2) was only used during the

initial test period used to determine the configuration for the beam testing prior to the
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Figure 1: The Test Setup. (a) Triblade 2 housed in the BC-H. (b) A spatial schematic of the
test environment with the beam source, the Virtex-IIs, and the BC-H housing the Triblade in
the left-most configuration. The wall indicates the point at which the beam enters the ICE
House test facility.
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experimental trials. A Triblade is composed of one IBM LS21 blade with two dual-core

AMD Opteron 2210 HE processors, two IBM QS22 blades (QS22a and QS22b) each with

two PowerXCell 8i (Cell) processors, and an expansion blade that handles data traffic.

For the testing, a Triblade was housed in a BladeCenter-H (BC-H Type 8852) chassis

during the experimental trials that involved it (see Figure 1). The BC-H was aligned

with the neutron beam passing through the QS22b, the QS22a, the expansion blade, and

the LS21, in that order. The test configuration also included two Xilinx Virtex-II FPGAs

(Xilinx 2007), one upbeam and the other downbeam of the test system. The Virtex-IIs

record a number of bit flips on a memory board, which is commonly treated as a Poisson

random variable with a rate proportional to the neutron fluence (the accumulated flux

over time in neutrons/cm2) at the Virtex-II (see Section 2.2). These measurements are

used for calculating corrected neutron fluence exposures for the hardware under test as

explained in Section 2.

Because one study goal was to estimate field susceptibility to neutron-induced faults,

the hardware was tested in the field configuration described above and while running

different applications, including some used for scientific computation. The test applica-
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tions used for the Cell were five computational test codes (cg, corr, hpl, int add, vpic)

detailed in Michalak, DuBois, Storlie, Rust, DuBois, Modl, Quinn, Manuzzato & Blan-

chard (2011), along with an idle test code, and a varied application condition, which

cycled through various applications. The Opteron test applications were an Opteron-

only version of the correlator test code (corr) and an idle condition. The test codes

were designed to run a job that lasted roughly one minute, produce an output line (start

and stop times, the relevant application, the hardware under test, and related output

including that needed to determine if an SDC had been observed), and then repeat the

cycle until a crash, hang, or an operator decision to terminate the trial. Virtex-II mea-

surements related to neutron fluence exposure were then collected, and the system was

rebooted before beginning the next test. The trials were conducted with two different

beam widths: the first 52 trials used a 2-inch beam width, while the last 61 used a 1-inch

beam width, for a total of n = 113 experimental trials.

For a particular trial, a single processor (Cell or Opteron) ran the desired application

while all of the hardware in that processor’s beampath was irradiated by the beam. That

is, a cylindrical volume throughout the Triblade (right to left in Figure 1) under test was

exposed to the beam. Therefore, it is not possible to attribute the cause of the error to

any one component for certain. Most notably, since two QS22s (a and b) are in a Triblade,

when a Cell in one QS22 is running an application, the corresponding Cell in the other

QS22 (running the idle test code) was also in the beampath. It is possible (although not

that likely) that observed errors result from hardware other than the processors in the

beampath, hardware that was affected by scatter, or causes unrelated to the beam.

A key goal of this work is to assess the impact on neutron fluence until error (SDC

or failure) of several of the factors mentioned above, namely (i) Application (cg, corr,

hpl, int add, vpic, varied, idle), (ii) Triblade (1, 3, 4), (iii) Beam Aim (Opteron, Cell),

and (iv) Beam Width (1-inch, 2-inch). A related goal is prediction of the distribution

of failures and SDCs due to cosmic ray induced neutrons, in actual clock time (for the
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neutron flux at Los Alamos) on a per beam aim and per Triblade basis, as well as for a

Roadrunner Connected Unit (CU) that includes 180 Triblades.

The Cox Proportional Hazards Model (CPHM) framework (Cox 1972) is adopted for

this analysis. However, there are several challenges that make the application of the

CPHM less than straightforward in our case. The most difficult challenge is that the

data are interval censored, with uncertain endpoints. This is because the neutron fluence

to which a device was exposed before an error occurs is unknown. Instead, all that

is known are the time of the last output line (ai) and the time at which the operator

noticed the error (bi) (or in some cases, the time at which the operator decided to end the

trial before observing an error). To make matters more complicated, the exact neutron

fluence to which a particular component in the BC-H was exposed until times ai or bi is

not known without error. This is because of attenuation (loss in beam intensity when

traveling through a medium) of the neutron beam once it enters the Triblade. Since

beam attenuation through a Triblade is unknown, the attenuation effect must be treated

as a parameter that must be estimated, along with the other parameters in the model,

thus leading to the uncertain endpoints ai and bi.

In addition to the interval censoring issues, the model must include mixed effects, since

the effect of the Triblade under test is most appropriately treated as a random effect.

Further, making predictions about the reliability of components in a particular beam aim,

Triblades, and Roadrunner CUs requires that the hazard function be explicitly modeled.

Finally, it is desirable to perform model selection to aid in prediction and assessing

variable importance. To our knowledge, there is currently no methodology available

that addresses all of these challenges. The next subsection reviews some of the relevant

literature which was built upon to create a data analysis methodology appropriate for

this problem.
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1.2 Review of Existing Methodology

Finkelstein (1986) was the first to directly address the issue of interval censored data in

the CPHM by jointly estimating the cumulative hazard and the regression coefficients.

Estimation is based on a full likelihood under the proportional hazards model where the

cumulative hazard is treated as a step-function at the event times. The step-function

assumption is not well suited for the prediction of future events. Further, the number of

parameters increases with the number of observations, which causes numerical instability

unless some form of penalization is introduced (So, Johnston & Kim 2010).

Goggins, Finkelstein, Schoenfeld & Zaslavsky (1998) avoid the estimation of the haz-

ard function by treating the interval censoring as an incomplete data problem and use

an EM algorithm to obtain estimates using just the partial likelihood. Goetghebeur &

Ryan (2000) also use EM while nonparametrically modeling the hazard, but assuming

a step-function for the hazard. Kooperberg & Clarkson (1996) adopt a full likelihood

approach as well, which allows for interval censoring, with linear or natural cubic splines

for the log-hazard. Abrahamowicz, Ciampi & Ramsay (1992) also use cubic splines to

estimate the log-hazard. These approaches are closer to what is needed here, but do

not easily allow for the mixed effects and uncertainty of the censored interval endpoints

needed for this analysis.

Tibshirani (1997) performs variable selection in the CPHM via L1-penalization (i.e.,

LASSO) of the partial log-likelihood. Fan & Li (2002) and Zhang & Lu (2007) achieve

penalization of the partial log-likelihood using the smoothly clipped absolute deviation

(SCAD) (Fan & Li 2001) and adaptive LASSO penalties, respectively, both of which

possess the attractive oracle property. However, none of these methods are directly

applicable to interval censored data.

Raftery, Madigan & Volinsky (1995) and Volinsky, Madigan, Raftery & Kronmal

(1997) use Bayesian model averaging (BMA) on a reduced subset of likely models and
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demonstrate a substantial predictive improvement over the classical approach of selecting

one model. Faraggi & Simon (1998) extends the Bayesian variable selection concept to

interval censored data. However, these approaches use the partial likelihood and thus

are not Bayesian approaches in the proper sense, nor do they provide an estimate of the

hazard function which is needed here in order to make predictions.

Ibrahim, Chen & MacEachern (1999) extends the previous work, using the full like-

lihood by assuming a discrete Gamma process on the hazard function, thus allowing

for interval censoring. Unfortunately, this results in an increasing hazard almost surely,

which may not be a reasonable assumption when considering many devices can exhibit a

bathtub curve hazard (i.e., a period of a higher failure rate for new devices that decreases

as the device ages and possibly increases later).

In the Bayesian paradigm, recent variable selection for models has focused on the

Stochastic Search Variable Selection (SSVS) (George & McCulloch 1993, George &

McCulloch 1997). In this procedure, the model (i.e., which covariates have a non-zero

coefficient) is treated as a random variable and is sampled along with the other unknown

parameters in the MCMC routine. Kinney & Dunson (2007) extended SSVS for mixed

models in linear and logistic regression. For a good review of Bayesian variable selection

methods, see O’Hara & Sillanpää (2009).

Most recently, Lee, Chakraborty & Sun (2011) has applied SSVS to the Cox pro-

portional hazards model using a fully Bayesian approach. This approach is the most

related to the approach taken here for the beam testing data. However, for simplicity

this work assumes a discrete response model, with a cumulative hazard that is assumed

to be a discrete Gamma process. This model for the cumulative hazard function implies

that events occur at discrete times, which is not sufficient for predicting very small error

times (e.g., a minimum of many error times such as when modeling the time until error

for a system composed of many individual components as in Section 4.5). In addition,

their approach does not directly address mixed effects and interval censoring, particularly

8



when the interval endpoints are uncertain, as is needed in this analysis.

In this paper, concepts from many of the works above are used to create an appropri-

ate model for the beam testing data. Namely, SSVS is applied to the CPHM with mixed

effects and interval censoring with uncertain endpoints. A fully Bayesian approach is

taken by considering the full likelihood and modeling the log-hazard function as a Gaus-

sian Process (GP) (Stein 1999). The particular GP used in this work is a Bayesian

parallel to the smoothing spline (Wahba 1990), so this choice is partially motivated by

Abrahamowicz et al. (1992) and Kooperberg & Clarkson (1996) who used cubic splines

to model the log-hazard. The model for the hazard function used here has the attractive

feature of being a function with a specified level of continuity. It is also discussed in

Section 4.4 that the Cox regression coefficients are not sensitive to the choice of priors

on the parameters for the GP that governs the hazard.

Section 2 presents the Bayesian model used in this analysis along with prior specifi-

cations and their rational. Section 3 describes the MCMC sampling routine used to fit

this model. Section 4 discusses the results of the fitted model along with verification of

assumptions and assessment of prior sensitivity, and Section 5 concludes the paper.

2 Modeling the Experimental Data

Define Ti, as the time until an error (SDC or failure) for each experimental trial i =

1, . . . , n. Most of the Ti are interval censored. That is, an interval (ai, bi), such that

Ti ∈ (ai, bi), with 0 ≤ ai ≤ bi ≤ ∞ is observed (except in three trials where the operator

noticed the failure during the same minute that the last output line was recorded, so that

ai and bi are the same within measurement precision). However, the desire is to model

Yi, i = 1, . . . , n, which is the amount of exposure (or fluence in neutrons/cm2) to the

component under test during the i-th trial until an error occurs. The relationship between

Yi and Ti is non-trivial, but can be approximated based on some physical principles, with

Section 2.2 providing details. First the model for a known Yi (ignoring for now the issues

9



involved with unknown interval censored endpoints for Yi) is presented in Section 2.1.

While in Section 2 fluence until failure and SDC are modeled collectively as the fluence

accumulated until any error, Section 4.5 describes an extension that separates out the

events of failure and SDC.

2.1 Model for the Exposure until Error

The Yi are modeled as independent observations from a CPHM,

hi(y | xi, zi) = h0(y) exp{β′xi + γ ′zi}, (1)

where (i) h0 is the baseline hazard function, (ii) xi = (xi,1, . . . , xi,p)
′ is a vector of covari-

ates corresponding to the fixed effects for the the i-th observation (the test application,

beam aim (Cell or Opteron), and beam width (1-inch or 2-inch), which are explained

further in the beginning of Section 4), (iii) β = (β1, . . . , βp)
′ is a vector of fixed effect

parameters, (iv) zi = (zi,1, . . . , zi,p)
′ is a vector of covariates corresponding to the random

effect due to Triblade for the i-th trial, and (v) γ = (γ1, . . . , γq)
′ ∼ N(0,Λ) is a vector

of random effect parameters.

The probabilistic model for Yi is then

Si(y) = P (Yi > y) = exp

{
−
∫ y

0

hi(u | xi, zi)du
}

(2)

where (1) provides the functional form of hi.

In the general framework presented here, the elements of β may be grouped in order

to facilitate variable selection. For example, suppose the first m elements of β correspond

to indicator variables describing the levels of a single factor (e.g., which application is

running). In this case, it may be desirable to have a single indicator variable to permit

variable selection on the entire factor or group of βs. Therefore, the modeling includes

gf ≤ p groups denoted by J1, . . . , Jgf , where Jl is a set of indices such that {βj : j ∈ Jl}

is the set of βs corresponding to the l-th fixed effect group (i.e., factor). A similar

construction is used for the random effects γ. Let the gr ≤ q groups for random effects
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be denoted K1, . . . , Kgr , where Kl is a set of indices such that {γk : k ∈ Kl} is the set of

γs corresponding to the l-th random effect group (i.e., factor).

The following prior distribution is assumed for β,

βj = δlξj, for j ∈ Jl, l = 1, . . . , gf ,

δl
ind∼ Bernoulli(ȧl), (3)

ξj
ind∼ N(0, ḃ2j).

The δl are indicator variables which permit variable selection for the l-th fixed effect

factor (i.e., if δl = 0 then all βj = 0 for the l-th factor). If δl = 1, then the βj for the l-th

factor have independent normal distributions.

Recall that for the random effects, it is assumed that γ ∼ N(0,Λ). Kinney & Dunson

(2007) describe a general hierarchical modeling framework for Λ. However, in many cases,

such as that here (i.e., with Triblade as a random effect) it is appropriate to simplify this

structure and assume (conditionally) independent random effects, i.e., let Λ be a positive

diagonal matrix with diagonal elements λ = (λ1, . . . , λq)
′, and so that γk

ind∼ N(0, λk).

The following prior distribution for λ is assumed√
λk = ζlψl, for k ∈ Kl, l = 1, . . . , gr

ζl
ind∼ Bernoulli(ċl),

ψl
ind∼ HC(ḋl), (4)

where HC(d) is the half-Cauchy distribution with median d. If ζl = 0, then all of the λk =

0 and all of the γk = 0 for the l-th random effect factor, while if ζl = 1 then γk is normal

with mean 0 and standard deviation ψl which is drawn from a HC distribution. The HC

was recommended by Gelman (2006) as a prior for standard deviation parameters, and

provided good performance when used in Reich, Storlie & Bondell (2009) as the prior for

a random effects standard deviation (with variable selection similar to that here) in the

context of nonparametric regression.

For the baseline hazard function h0 a GP is assumed with covariance

11



K(s, t) =
2∑

m=0

ḟ 2
mBm(s)Bm(t) + τ 2B4(|s− t|), (5)

where Bm is the m-th Bernoulli polynomial and ḟ 2
0 , ḟ 2

1 , ḟ 2
2 , and τ 2 are variance param-

eters. This choice of covariance function is also described in Reich et al. (2009) and

Wahba (1990). The covariance K is only defined on [0, 1]2, so the domain is transformed

to t̃ = t/t∗, for some large value t∗ (t and t∗ are measured in neutrons/cm2, not time).

It is further assumed that the baseline hazard h0(t) = h0(t
∗), a constant, for any t > t∗.

This is just a formality for predictive purposes, as t∗ is chosen so that t < t∗ always holds

in the likelihood evaluations for estimation purposes. The constant hazard eventually

assumption also ensures a regularity of the model, in the sense that
∫∞
0
h0(t)dt = ∞

almost surely, so that Si(∞) = 0 in (2), and Yi is a proper random variable.

Reich et al. (2009) describe how the mean zero GP with covariance K can be thought

of as a quadratic function (with variances on the quadratic coefficients given by ḟ 2
0 , ḟ 2

1 ,

and ḟ 2
2 , respectively) plus a remaining stationary function (with variance τ 2) that allows

for deviation from a quadratic curve. Thus, the formal model for h0 is

log h0(t) =

{ ∑2
m=0 φmBm(t̃) + g0(t̃) for t ≤ t∗

log h0(t
∗) for t > t∗

(6)

with t̃ = t/t∗, φm ∼ N(ėm, ḟ
2
m), g0(t) ∼ GP(0, τ 2K∗), K∗(s, t) = B4(|s−t|), and GP(0, K)

is a GP with mean 0 and covariance function K. As in Reich et al. (2009) we assume

τ ∼ HC(ġ).

The covariance K was chosen for this application over the more traditional powered

exponential covariance because K is more stable when many points are close together,

and it leads to a large computational savings as described in Section 3. The covariance

function K also has a close ties to the cubic smoothing spline estimator (Wahba 1990).

Values for {ȧl}
gf
l=1, {ḃj}

p
j=1, {ċl}

gr
l=1, {ḋl}

gr
l=1, {ėm}2m=0, {ḟm}2m=0, ġ, and t∗ need to

be chosen to complete the model specification. Section 4.1 describes choices of these

values based on previous information and expert solicitation, and Section 4.4 presents a
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summary of the effect of these choices on the analysis.

2.2 Exposure to the Component Under Test

In Section 2.1, a model was described for Yi, i = 1, . . . , n, which is the amount of

exposure to the component under test (in neutrons/cm2) until an error (SDC or failure).

As mentioned, the Yi are not directly available in the experimental data. The following

describes the relationship between the directly observable quantities ai and bi, the interval

censored values for the time until the i-th error Ti, and Yi.

Let Ei(0) denote the total exposure at the wall in neutrons/cm2 where the beam

enters the ICE House facility (see Figure 1) from the start of the i-th trial until time of

error Ti. For a known Ti, with negligible error the corresponding Ei(0) can be calculated

based on a known proportionality relation (i.e., the beam flux in neutrons/cm2/sec at

the wall is known). However, the experimental data do not contain the Ti, but rather

the interval censored time values (ai, bi) for each trial, i = 1, . . . , n. Therefore, Ei(0)

itself is unknown, but the interval censored exposure values at the wall for the i-th trial

(Ai(0),Bi(0)), corresponding to (ai, bi) can be calculated with negligible error.

Denote the distance from the wall to the component being tested in the i-th trial

as vi. The data needed to fit the model described in Section 2.1 are corresponding

intervals for the exposure at the location of the component under test in the Triblade

(Ai(vi),Bi(vi)). The precise values of (Ai(vi),Bi(vi)) are not known, but will be less

than (Ai(0),Bi(0)) due to divergence (the spreading out of the neutron stream so there

are fewer accumulated neutrons/cm2 within the stream further from the beam source).

Attenuation (i.e., the gradual loss in intensity through a medium like a Triblade) of the

beam further affects the exposure to the components in different locations in the interior

of the Triblade. The reduction in fluence due to divergence can be calculated under the

commonly used assumption that the neutron beam is a point source. With the wall 20

m from the beam source, assume a hypothetical object that is v m from the wall (but in
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front of the Triblade so that attenuation effects can be ignored). If Ei(0) is the exposure

at the wall for the ith trial, then the exposure an object v m away from the wall would

be

Ei(v) = Ei(0)
202

(20 + v)2
. (7)

The decrease in radiation due to attenuation through variable matter (i.e., the Tri-

blade) is difficult, if not impossible to account for precisely. However, the total proportion

reduction through the entire Triblade for each of the four beam aims, r = 1, 2, 3, 4 (lower

Cell, upper Cell, lower Opteron, upper Opteron, respectively, depcited by the dots in

Figure 2(b) (b)), can be estimated with the Virtex-II readings. We allow the reduction

due to attenuation (from the front of the front Virtex II to the back Virtex II), αr,

r = 1, 2, 3, 4 to be different for each of the four beam aims, because the Triblade has

different material in the path of the beam in each blade for each of these beam aims.

The data provide information on the total attenuation from the front Virtex-II to

the back Virtex-II, but not on the attenuation at the point of a particular component

under test or the locations where the attenuation occurs. However, this information can

be used to bound the attenuation at a particular location in the Triblade. The actual

exposure to a component during a given experiment is already treated as a censored

interval (because the exact clock time of the failure is unknown), so these bounds on the

attenuation simply add to the uncertainty in the censored interval.

The model for attenuation widens the censored interval for exposure using the fol-

lowing logic. The lowest the exposure to a particular component in the beam could be

is that resulting when all of the reduction due to attenuation happened upbeam of the

component. On the other hand, the highest this exposure could be is that resulting when

none of the reduction due to attenuation happened upbeam of the component (i.e., all

attenuation happens downbeam of the component). Assuming ignorance about anything

in between these two extremes results in a second layer of interval censoring for the

exposure to the component under test.
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Specifically, the expression for exposure to a hypothetical object in the path of the

beam for beam aim r ∈ {1, 2, 3, 4} a distance v from the wall is,

Ei(v) =


Ei(0) 202

(20+v)2
for v ≤ w1

Ei(0) 202

(20+v)2
αr for v > w2

E∗ for some E∗ ∈
[
Ei(0) 202

(20+v)2
αr, Ei(0) 202

(20+v)2

]
for w1 < v ≤ w2

, (8)

where w1 and w2 are the distances from the wall to the front and back of the Triblade

BC-H, respectively, as seen in Figure 1, and αr is the total proportion reduction due to

attenuation for the r-th beam aim. If w1 < v ≤ w2 we simply assume ignorance about

the value of Ei(v) other than the fact that it is in an interval.

Finally, the accumulated fluence to the component under test during the i-th trial,

Ei(vi), is assumed to lie in the interval (a∗i , b
∗
i ), where

a∗i = Ai(0)
202

(20 + vi)2
αri (9)

b∗i = Bi(0)
202

(20 + vi)2
, (10)

where ri is the beam aim (1,2,3,4) for the i-th trial. The censored interval in (9) and (10)

thus accounts for both the incomplete knowledge of the precise clock time at which the

failure occurred (through Ai(0) and Bi(0)), and incomplete knowledge of the attenuation

effect inside the Triblade BC-H (through the inclusion of αri or not).

If the proportion reduction due to attenuation for each beam aim αr, r = 1, 2, 3, 4 were

known, then the censored interval for the total amount of exposure to the component

under test (a∗i , b
∗
i ) could be calculated using (9) and (10). However, the rates αr are

unknown parameters that must be estimated, which is what makes the values of these

interval censored endpoints (for the total amount of exposure during the i-th trial to the

component being tested) unknown. The estimation of the αr is feasible though, since

there is information about the αr contained in the readings from the front and back

Virtex-IIs.
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Let vf,i and Nf,i be the distance from the wall and the number of bit flips, respectively,

for the front Virtex-II, and similarly define vb,i and Nb,i for the back Virtex-II for trial

i. The number of bit flips on a Virtex-II is known to be approximately Poisson (due to

the Poisson approximation to the Binomial for large n, small p) with mean proportional

to the neutron fluence times the sensitive area (the cumulative area of the bits on the

Virtex II). Therefore, we have

Nf,i ∼ Poisson(µf,i)

Nb,i ∼ Poisson(µb,i),

where

µf,i = κCi(vf,i) = κCi(0)
202

(20 + vf,i)2

µb,i = κCi(vb,i) = κCi(0)
202

(20 + vb,i)2
αri , (11)

where Ci(0) is the total fluence at the wall for the entire duration of the ith trial (i.e.,

usually Ci(0) = Bi(0), unless the trial ended with no error occurring, in which case

Bi(0) =∞ and Ci(0) = Ai(0)), and κ is the proportionality constant (the sensitive area)

which is the same for both µf,i and µb,i.

For the reasons discussed previously, the values of Ci(0) are known (with negligible

error), based on the known beam flux at the wall and the time spent in the beam.

However, α and κ are (nuisance) parameters that must be estimated. The sensitive area

is known to be 3.586 × 10−8 cm2, but κ is allowed to vary about this known area in

the prior specification in order to allow for error in the approximation given in (11); see

Section 4.1.

We assume

κ ∼ Gamma(ḣ1, ḣ2),

which is fairly insensitive to ḣ1, ḣ2 since there is information about κ in every experimental

trial. However, the problem with assuming independent priors for the αr is that there is

16



only information about αr for trials where ri = r. Some beam aims (specifically those

for the Opterons) have fewer trials, which would lead to a large uncertainty about these

αr. However, LANL experts suggested that the proportion reduction due to attenuation

for the four beam aims should be similar; see Section 4.1. Therefore, we assume that

αr ∼ Gamma(µα, σ
2
α),

where µα and σ2
α are the mean and variance, respectively, of the Gamma distribution,

and

µα ∼ Gamma(i̇1, i̇2),

σ2
α ∼ Gamma(j̇1, j̇2).

(12)

3 MCMC Routine

The observed data include a = (a1, . . . , an)′, b = (b1, . . . , bn)′, N f = (Nf,1, . . . , Nf,n)′,

N b = (Nb,1, . . . , Nb,n)′, where the ai and bi are the interval censored clock times as defined

in Section 1.1. In addition, there are the fixed, known covariates, xi, zi, vi, vf,i, and

vb,i, i = 1, . . . , n, which are suppressed in the likelihood notation below for convenience.

As mentioned, most of the observations are interval censored, but some observations

are not technically interval censored (i.e., ai = bi for three trials in which the operator

noticed a failure immediately after it happened), and these observations must be handled

differently in the likelihood.

We adopt the Gelfand style for density notation (Gelfand 1990), and let [X] denote the

probability density function of the random variable X, and [X | Y ] denote the conditional

density of X given Y . The likelihood for the data is then

L(β,γ,λ,φ, g0, τ, α, κ)

17



= [a, b,N f ,N b | β,γ,λ,φ, g0, τ, α, κ]

= [a, b | β,γ,λ,φ, g0, τ, α] · [N f | α, κ,a, b] · [N b | α, κ,a, b]

=
n∏
i=1

{[
(Si(ai)− Si(bi)) I{ai<bi} + di(ai)I{ai=bi}

]
Pµf,i(Nf,i)Pµb,i(Nb,i)

}
, (13)

where Si is given in (2), di(y) = −∂Si(y)/∂y, and Pµ(·) is the density of a Poisson random

variable with mean µ.

Inference can then be carried out with standard MCMC techniques; more details are

given in the online Supplementary Material. A slight complication is that the calculation

of (13) requires evaluation of
∫ y
0
g0(t)dt for y ∈ {a1, b1, . . . , an, bn} (recall g0 is the GP

representing deviation from quadratic in log h0, see (6)). To make this integral evaluation

more tractable, a dense grid of points ω = (ω1, . . . , ωN)′, equally spaced by ∆ω, is

used to evaluate the integral with a quadrature approximation, where N = 500 in this

application. This being the case, g0 need only be known at the grid points ω, so only

the values of a realization of g0 in the MCMC algorithm at g0(ω) = (g0(ω1), . . . , g0(ωN))′

are required. For practical purposes then, samples are obtained from the approximate

posterior distribution

[β,γ,λ,φ, g0(ω), τ, α, κ | a, b,N f ,N b]

∝ L(β,γ,λ,φ, g0(ω), τ, α, κ)·[β]·[γ | λ]·[λ]·[φ]·[g0(ω) | τ ]·[τ ]·[α]·[κ] (14)

where L(β,γ,λ,φ, g0, τ, α, κ) is the same as that in (13) only it is evaluated using the

approximation
∫ y
x
g0(t)dt ≈

∑
ωk:x≤ωk<y g0(ωk)∆ω, and [g0(ω) | τ ] is a multivariate normal

density with mean 0 and covariance τ 2Σ with (k, l)-th element τ 2K∗(ωk, ωl).

The sampling is carried out with a typical hybrid Gibbs updating scheme with several

Metropolis Hastings (MH) steps. The details are provided in the online Supplementary

Material. In this application, the MCMC algorithm is fairly robust to the precise values

of the control parameters.

The algorithm requires the evaluation of the data likelihood and the random gen-

eration of g∗0(ω), which requires the O(N3) Cholesky decomposition of τ 2Σ. However,
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the structure of this decomposition is affected only by a constant as τ changes. Since Σ

remains constant throughout the sampling scheme, the Cholesky decomposition is only

needed once outside of the MCMC iterations. This speeds up computation considerably

over other popular GP covariances such as the powered exponential, for example, while

still maintaining a large amount of flexibility for modeling the baseline hazard. Further,

this covariance (being quadratic as opposed to exponential squared) is much more stable

computationally (i.e., remains computationally positive definite) when there are many

points close together as is the case here.

The estimation procedure was tested on several known truth test cases with interval

censored data, but without the complication of uncertain endpoints (results not shown

here). The procedure did very well at estimating the fixed effects (including variable

selection), regardless of the quality of the baseline hazard estimate. The random effects

along with the level and shape of the hazard were also estimated very well (i.e., posterior

distributions were tightly clustered around the true values) unless the sample size was

small (less than 100) and the log-hazard deviated much from quadratic. For small sam-

ples, credible sets for random effects and the hazard function become much wider, but

still reliably contained the true values, provided that somewhat reasonable priors were

used.

4 Analysis of the Beam Testing Data

For the analysis of the beam testing data, xi,1, . . . , xi,6 are indicators for whether or not

(1 or 0) the application running during the i-th trial was cg, corr, hpl, int add, vpic,

or varied, respectively, defined in Section 1.1. If all xi,j = 0 for j = 1, . . . , 6 then the

component was in an idle condition. The covariate xi,7 is an indicator for beam aim (0

= Cell, 1 = Opteron), and xi,8 equals the beam width (1-inch or 2-inch). Each fixed

effect parameter in the vector β = (β1, . . . , β8) was treated as a separate group, i.e., each

could be independently selected for inclusion in the model. This makes sense for β7 and
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β8 since they are representing different factors. For β1, . . . , β6 the rational was that some

applications may have some additional effect relative to the baseline Operating System

behavior (idle condition), whereas other applications may not. Thus, a unique indicator

for variable selection (3) is attached to each βj.

The values of zi,1, zi,2, zi,3 provide indicators for which Triblade is being tested (Tri-

blade 1, 3, or 4), and γ1, γ2, γ3 are grouped together as one factor in the analysis. That

is, either there is positive random effect variance λ1 for the entire Triblade factor or not.

4.1 Prior Specifications

Values for {ȧj}8j=1, {ḃj}8j=1, ċ1, ḋ1, {ėm}2m=0, {ḟm}2m=0, ġ, ḣ1, ḣ2, i̇1, i̇2, j̇1, and j̇2, need to

be chosen to complete the prior specification. The values chosen for this application have

been carefully specified based on previous studies and expert solicitation. Section 4.4

provides a sensitivity analysis of the effect of these choices on the analysis.

The prior on βj implies that it is identically zero with probability 1−ȧj. Here ȧj = 0.5

is specified for each j to allow each fixed effect covariate a 50% chance of being in the

model a priori. Neutron-induced soft error experts at LANL suggested that if any of the

fixed effect covariates had an effect, a 10× multiple to the baseline hazard would be a

very large effect. Therefore, when ḃj = 1, it is a priori assumed that the 99-th percentile

of the multiplicative effect to the hazard function is 10. For the random effect due to

differences among Triblades, ċ1 was set to 0.5 to allow the Triblade effect a 50% chance

of being in the model a priori. LANL experts suggested there may be about a 20-30%

difference between two Triblades (if there was a non-negligible difference). Therefore, the

median of the HC prior on ψ1, the random effect variance when it is positive, was set to

ḋ1 = 0.4. This gives a median relative difference between two randomly drawn Triblades

(i.e., the ratio, largest to smallest, of their respective multipliers to the hazard) of about

1.3 a priori, if there is a difference. The value for the largest exposure before a constant

hazard of t∗ from (6) was set to 2.752× 109 neutrons/cm2, as this is an upper bound on
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the amount of exposure that any of the components received.

A previous study on the Cell processor indicated a projected mean fluence until neu-

tron induced soft error of 2.25 × 108 neutrons/cm2 for the two Cells in the Cell beam

aim, which corresponds to a failure rate (if it was constant) of 4.4× 10−9 cm2/neutron.

However, it was indicated that this projection may only be accurate to within an or-

der of magnitude. Hence ė0 = 2.5 and ḟ0 = 1 are used so that with t∗ = 2.752 × 109

neutrons/cm2, the baseline (corresponding to Cells running in the idle condition) haz-

ard “mean” level φ0 is geometrically centered around 4.4 × 10−9 and contained within

(0.34, 58.2)× 10−9 with 99% probability, a priori.

Further, the values ė1 = ė2 = 0 and ḟ1 = ḟ2 = 0.25 are used, to encourage the

inclusion of linear plus quadratic terms if they are needed. The median of the HC prior

on τ is set to ġ = 0.3, to encourage small values of τ so that departures from the quadratic

trend for the log-hazard should be small unless the data suggest otherwise.

The prior used for κ (the proportional multiplier to get from number of bit flips to

fluence for the Virtex-IIs) is centered around the sensitive area (the total area of the bits

on the Virtex II) of 3.586× 10−8 cm2, scaled by t∗ = 3.725× 1010 to result in a mean for

κ of 1336. Thus the values ḣ1 = 668 and ḣ2 = 0.5 are used to suggest that κ is in the

interval (1219, 1459) with 99% probability a priori.

A fairly diffuse prior was used for µα, with i̇1 = 3.35 and i̇2 = 10. This implies that

the proportion of neutrons remaining after passing through the Triblade is anywhere from

(0.04, 0.99) with 99% probability, a priori. The vague prior for µα is also justified in the

sense that there is very little posterior sensitivity to this prior specification anyhow. The

prior for σ2
α was set according to the assertion by LANL experts that the difference in

reduction due to attenuation between different beam aims should be less than 10-20%.

Therefore, we set j̇1 = 1 and j̇2 = 200 so that the standard deviation σα is anywhere

between (0.011, 0.136) with 95% probability, a priori.
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4.2 Assessing the Adequacy of Model Assumptions

Before proceeding to the analysis, some of the key assumptions of the model presented

in Section 2 are assessed. Four variables that could affect the hazard are included in this

analysis, here referred to as factors since they take a small number of discrete values, (i)

Application (cg, corr, hpl, int add, varied, vpic, idle), (ii) Triblade (1, 3, 4), (iii) Beam

Aim (Opteron, Cell), and (iv) Beam Width (1-inch, 2-inch). To assess the proportional

hazards assumption for each factor, the data were split into subsets depending on the

level of a particular factor. For a given factor the model was then fit with all of the

other covariates included for each subset. Finally, the posterior median of the logarithm

of the baseline hazard log(h0(y)) corresponding to the model fit on each subset (one for

each level of the given factor) of the data was plotted (not shown). The corresponding

log-hazard in each plot showed no significant deviation from parallel lines, indicating that

the proportional hazards assumption is plausible in this case.

The probability integral transform was also used in checking overall model fit. If

(a∗i , b
∗
i ), i = 1, . . . , n, is an interval censored sample from the model in Section 2,

then (Si(b
∗
i ), Si(a

∗
i )) is an interval censored sample from a Uniform(0, 1) distribution.

The conditional distribution of a Uniform(0, 1) random variable, given that it is in

the interval (Si(b
∗
i ), Si(a

∗
i )), is Uniform(Si(b

∗
i ), Si(a

∗
i )). So for each i, a draw Ui ∼

Uniform(Si(b
∗
i ), Si(a

∗
i )), i = 1, . . . , n from the posterior distribution is made. If the

model is a reasonable approximation for these data, then the Ui, i = 1, . . . , n, should

be characteristic of an iid sample from a Uniform(0, 1) distribution and Zi = Φ−1(Ui)

(where Φ is the standard normal CDF) should be characteristic of an iid sample from a

standard normal distribution. Figure 2(a) displays a normal Q-Q plot of the Zi, while

Figure 2(b) presents the Zi plotted against the order of the experimental trials. The Q-Q

plot shows that the points fall very close to the y = x line, indicating good agreement

between the model and the data. Thus, there appears to be no systematic bias in the es-
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Figure 2: Probability Integral Transform Residual Diagnostic Plots.
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(a) Normal Q-Q plot of Z residuals
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timate of the distribution depending on the value of exposure, leading to confidence that

the model is sufficiently flexible for this data set. The plot on the right shows random

scatter across the order of the experimental trials, indicating no trend in the Zi deviates

with the sequential order in which the trials were performed.

4.3 Summary of the Fitted Model

It appeared (based on time series plots) that the MCMC Algorithm described in the Sup-

plemental Material was in its steady state for this application somewhere before 10,000

iterations, so 50,000 posterior samples were collected, starting with iteration 10,001. The

total 60,000 iterations took about 12 hours on a MacBook Pro with a 3.06 GHz Intel Core

2 Duo processor. The results below reflect cosmic-ray-neutron-induced errors (failures

and SDCs), and do not include those due to other causes. Further, all results are specific

to the experimental conditions, e.g. angle of incidence of the beam, and are based on

the experimental data and the model used for the data and do not neccessarily reflect

failures or SDCs observed in the Roadrunner platform.

Figure 3 displays 50 randomly selected posterior draws of the baseline hazard function

for the full model, along with the posterior median and 95% credible bands. The median

hazard appears mostly flat like an exponential failure distribution, and it is clear that a
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constant curve fits well within the 95% bands, thus there is no evidence of a departure

from a constant hazard. However, the 95% bands are fairly wide, and a log-linear or log-

quadratic trend could easily fit within these bands as well, and some individual posterior

draws of the hazard do exhibit some “bath-tub” curve behavior. Thus, it is certainly

possible that the hazard may increase at larger levels of exposure. With additional data

with even higher exposure counts, we speculate that there might be more evidence to

suggest that the hazard rate eventually increases, but this is not much evidence to suggest

that this is the case based on these data.
Figure 3: Baseline Hazard Function. Pos-
terior median hazard (solid) along with
95% Credible Bands (dashed) and 50 ran-
domly selected posterior draws (grey).
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The posterior distribution results for the

fixed effects and the random effects are sum-

marized in Table 1. It is preferable to use the

median (as opposed to the mean) as a summary

measure of the “center” of the posterior distri-

bution in this analysis, since the distribution

of some of the parameters (particularly those

that are related in some way to a HC prior)

have fairly heavy right tails. Thus, for consistency, the 2.5, 25, 50, 75, and 97.5 per-

centiles are presented, respectively, along with the probability that the effect is nonzero

where appropriate, to summarize the posterior distribution of fixed effects and random

effects parameters.

The application with the potentially largest effect is hpl, but it only has posterior

probability of a non-zero effect (i.e., different from the idle condition) of 0.417. The

posterior median of the hazard multiplier due to the hpl application is 1.000 with a 95%

credible interval (CI) of (1.000, 2.545), indicating at most a modest increase in the rate

of errors for this application. The application in this study that is most similar to an

application that would get used in the field is vpic. The posterior probability that vpic

has a different error rate than idle is 0.202, with a 97.5 percentile for the multiplicative
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Table 1: Posterior Summary of Fixed Effects and Random Effects Parameters: exp{β} is the
multiplicative effect to the hazard for the given effect, while exp |γ−γ′| is the relative difference
in hazard rate between two randomly selected Triblades (larger to smaller).

Fixed Effect Pr(β 6= 0)
Posterior Summary of exp{β}

2.5% 25% 50% 75% 97.5%

cg (β1) 0.195 0.654 1.000 1.000 1.000 1.457

corr (β2) 0.158 0.723 1.000 1.000 1.000 1.247

hpl (β3) 0.417 1.000 1.000 1.000 1.494 2.545

int add (β4) 0.594 0.237 0.452 0.720 1.000 1.000

varied (β5) 0.240 0.581 1.000 1.000 1.000 1.681

vpic (β6) 0.202 0.600 1.000 1.000 1.000 1.356

Beam Aim (β7) 1.000 2.749 4.574 5.884 7.525 11.753

Beam Diam (β8) 0.198 0.675 1.000 1.000 1.000 1.468

Random Effect Pr(λ 6= 0)
Posterior Summary of exp |γ − γ′|

2.5% 25% 50% 75% 97.5%

Triblade (λ1) 0.897 1.000 1.098 1.357 1.946 5.050

effect of 1.356. Overall these results indicate that there is not very much evidence that

the hazard rate differs for the various applications versus an idle condition. While this

result may seem surprising, it is not unreasonable, as the processor is not literally idle

when it is not running an application. In particular it is still executing instructions in

response to the operating system. Of course, with additional time on test or with other

applications, different results might be found.

The coefficient for Beam Aim (β7) has a posterior probability of 1.00 that β7 6= 0,

indicating a definite difference between Cell beam aim and Opteron beam aim. The

posterior distribution indicates a median multiplier to the hazard rate of 5.884 with a

95% CI of (2.749,11.753), meaning there is roughly six times more risk of an error when

the beam is aimed at Opterons as opposed to Cells. This result is not the same as saying

that the Opteron has a hazard rate that is roughly six times the Cell hazard rate. Other

hardware along the trajectory of the beam when it is aimed at an Opteron or hardware

affected by scatter may be responsible for errors that resulted when the beam was aimed

at an Opteron. The same holds for the Cell beam aim so that the root cause of errors in
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either beam aim cannot be conclusively determined.

There is partial confounding between the Triblade under test and the beam width

used for the testing. Specifically, the 2-inch beam was used for testing Triblade 3 , the

1-inch beam was used for testing Triblade 4 and both were used for testing Triblade 1.

In a situation such as this, it can be hard for the model to determine whether it is the

Triblade under test or the beam width that has a more influential effect on the hazard

rate. Nonetheless, the posterior probability that either the Triblade under test or the

beam width (or both) is an important predictor of the hazard rate is 0.93, and the results

below suggest that it is likely the Triblade under test that has the larger impact on the

hazard rate.

The posterior probability that coefficient β8 (representing the beam width effect)

differs from zero is 0.198. That is, there is not much evidence to suggest that beam

width alone has an effect on fluence until error distribution. The 97.5 percentile of the

multiplicative effect is 1.468, indicating that even if beam width does have an effect it is

not very large. This means that the error rate for a 1 inch width beam is not that different

from a 2 inch width beam, suggesting that the components most crucial to failure were

likely covered by the 1 inch beam width.

The posterior probability that λ1 6= 0 is 0.897, which indicates that there is likely a

nonzero random effect due to Triblade. The posterior median of λ1 is 0.381 with a 95%

CI of (0.000, 1.294) (not shown in Table 1). This leads to a median relative difference

(largest to smallest) between two Triblades of about 1.357 with a 95% CI of (1.000,

5.050). The effect due to Triblade appears to be the second largest effect in this study

after that of Beam Aim.

4.4 Prior Sensitivity

Variable selection in our model (i.e., proportion of nonzero draws in the posterior) can

be sensitive to the prior placed on the βs for fixed effects and λs for random effects.
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For example, a more diffuse prior for the positive part of βs and λs can lead to a lower

probability of inclusion. However, general summaries, such as 95% CIs for example, for

the βs and γs do not seem to be that sensitive to the prior placed on these parameters.

The shape of the baseline hazard h0 for individual draws, and to a lesser extent the

“mean” level (φ0) of h0, are somewhat sensitive to their prior specifications. This is

because this curve has a lot of flexibility in the model of Section 2.1. In addition, there

is diminishing information about this curve at higher exposures. Summaries such as the

posterior median h0 and 95% confidence bands, for example, have some sensitivity to

prior assumptions, but less so than the extremes of the distribution. With more diffuse

priors on the constant, linear and quadratic trends and g0 standard deviation, φ0, φ1, φ2,

and τ , respectively (i.e., with ė0 = ė1 = ė2 = 0, ḟ0 = 100, ḟ1 = ḟ2 = 10, and ġ = 1, as

compared to the priors used in the analysis of ė0 = 5, ė1 = ė2 = 0, ḟ0 = 1, ḟ1 = ḟ2 = 0.25,

and ġ = 0.3), the median hazard and 95% confidence bands only had relative changes of

about 25%.

The posterior distributions of the fixed effect parameters in the model, i.e., the βs,

do not appear to be sensitive at all to changes in the hazard priors. The random ef-

fect parameters do have some sensitivity to the changes in hazard priors, due to the

confounding that is inherent between the γs (random effect coefficients) and the φs (the

quadratic trend coefficients of the log-hazard). For example, suppose a fairly diffuse prior

is assumed for the random effect standard deviation λ, and a tight prior which is not

consistent with the data is assumed for the hazard. Then in order to pull the parameter

values away from the prior toward the data, λ will be made large and the γs will be made

either all large and positive or all large and negative as needed to account for the poor

prior on the hazard function. In this case the posterior medians of γ1, γ2, and γ3, were

0.17, 0.00, and -0.43, respectively, with a posterior median for the sum of the three γs

of -0.201, which indicates some possible biasing effect of the hazard like that mentioned

above, but also no substantial biasing effect.
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The beam attenuation model parameters κ and µα have very little sensitivity to prior

specification within any reasonable bounds. This is due to the large number of Virtex-II

observations, each of which provides direct information about these parameters. The

posterior distributions of the αr do have some sensitivity to the prior on σ2
α, however.

For example if set very tightly near zero, then all αr are tightly centered around µα, but

if set very diffuse, then the αr become much more diffuse. Thus, it was important to get

expert solicitation involved in setting this prior. Also, while the αr show some sensitivity

to the prior on σ2
α, the end results are not altered substantially, and the conclusions in

this section remain unchanged for any reasonable prior, which gives us further confidence

in their validity.

4.5 Projection of Failures and SDCs to Clock Time

Until now all errors (SDC or failure) have been treated as one collective class of errors.

Now SDCs are considered separately from all errors that are not SDCs, i.e., detectable

errors such as crashes, are denoted as failures. To this end, it is necessary to model the

probability that a given error is an SDC as opposed to a failure.

It is assumed that the probability that a given error is an SDC, Pr(SDC), is constant

over the levels of neutron exposure in this study, independent among trials, and not

affected by the covariates with the exception of Beam Aim. There is some speculation

that the other covariates could affect Pr(SDC), e.g., some applications could produce

more SDCs than others. However, an effect on exposure until any error due to any of the

applications was not apparent fromn the data, and the above assumptions were also said

to be reasonable by LANL experts. Further, with so few SDCs (four total in the entire

experiment), it would be very difficult to capture these relationships with any accuracy.

With the above assumptions, Pr(SDC) is estimated independently from the parame-

ters of the model in Section 2 based on the binomial data from the errors that occurred

in the experimental trials. That is, let N o be the number of errors observed when the
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beam was aimed at an Opteron that could possibly have been a SDC (as explained in the

next paragraph) and let N o
SDC be the number of those errors that were SDCs. Denote

the probability that a given error from an Opteron is an SDC as Pro(SDC). Finally,

let N c, N c
SDC , and, Prc(SDC) be similarly defined for the Cells. Based on expert judg-

ment, a Beta(2, 20) prior on both Pro(SDC) and Prc(SDC) is assumed, which implies

that the proportion of all errors that are SDCs is anywhere from 0.005 to 0.304, with

99% probability, a priori. The posterior distributions of Pro(SDC) and Prc(SDC) are

then Beta(N o
SDC + 2, N o + 20) and Beta(N c

SDC + 2, N c + 20), respectively.

In this study N o = 11, N o
SDC = 2, N c = 76, and N cSDC = 2. The total of

N o + N c = 87 is smaller than the total number of trials n = 113. This is because not

every trial ended in an error (some were right censored) and not every error could have

been an SDC (some errors occurred in the idle state, and an SDC could not have been

detected unless the trial had a computational application running). This results in a

posterior median for Pro(SDC) of 0.114, with a 95% CI of (0.035, 0.250), and a posterior

median for Prc(SDC) of 0.038, with a 95% CI of (0.011, 0.088).

Based on the estimated model, predictive distributions for the clock time until a

failure and the clock time until SDC that might be observed in practice for each of the

two beam aims (hardware in the Opteron beampath or Cell beampath, respectively) are

presented in Figure 5. These distributions are for the application “vpic” as it is the most

realistic example (of the applications used in this study) of a code that would be run in

the field, although the applications in this study did not demonstrate much difference

from one another anyhow.

These results have been calculated for the neutron flux in Los Alamos, NM, which is

estimated to be approximately five times that at sea level (http://seutest.com), and

are based on fluences for neutrons with energies above 10 MeV. The 10 MeV cutoff is a

value suggested by (JEDEC Solid State Technology Association 2001) as neutrons with

energy much below 10 MeV are not thought to be able to cause bit flips, but the lowest
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energy (ε) required to cause a soft error is component dependent. In any case, the exact

cutoff used here would not affect projections provided the neutron spectrum at the ICE

House was the same as that for cosmic-ray-induced neutrons in Los Alamos above the

neutron energy corresponding to the unknown ε. In Figure 4 it can be seen that the

spectrums are not identical, particularly near the low end and for very high neutron

energies (Wender 2003). However, they are very similar near and above 10 MeV (i.e.,

near where ε is believed to be) until very high values of neutron energies are reached,

where there are so many fewer neutrons that it can be assumed that the difference has a

negligible effect on projections.

Figure 4: Comparison of LANSCE neutron spec-
trum with measured cosmic-ray induced neutron
spectrum in Los Alamos.

There is also variability in the neu-

tron flux over time in Los Alamos.

To account for this, it is assumed,

that the ambient neutron flux in Los

Alamos, NM is normal with mean 0.019

neutrons/cm2/sec and standard deviation

4.4 × 10−4 neutrons/cm2/sec. This as-

sumption is the same as that used in a

previous study (Michalak et al. 2005) only

with the mean used in that work (0.025 neutrons/cm2/sec) corrected to the value ob-

tained according to http://seutest.com. Thus, the fluence over time is modeled as a

Brownian Motion (BM) path with drift equal to 0.019 neutrons/cm2/sec and scale factor

equal to 4.4× 10−4 neutrons/cm2/sec.

The predictive distributions for exposure until failure and SDC for Cell and Opteron

beaim aims in Figure 5 are produced by generating 10,000 draws (then smoothing them)

from the following Monte Carlo simulation procedure.

Algorithm 1.
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1. Randomly draw a set of parameters from the posterior distribution.

2. Randomly draw a Triblade effect γk ∼ N(0, τ 2) given the sampled value of τ in 1.

3. Randomly generate an exposure until error E according to the hazard model in
(2) with the parameters given in step 1 and application = “vpic”, beam width = 2
inches, and beam aim specific to the case at hand. If simulating SDCs use a baseline
hazard function of h0×Pro(SDC) for Opteron Beam aim or h0×Prc(SDC) for Cell
Beam aim (where Pro(SDC) or Prc(SDC) is obtained from step 1) as the baseline
hazard function. If simulating failures use a baseline hazard of h0× [1−Pro(SDC)]
(or h0× [1−Prc(SDC)]). This is equivalent to the assumptions made above for the
occurrence of SDCs and failures.

4. Randomly generate a BM path with drift equal to 0.019 neutrons/cm2/sec and scale
factor equal to 4.4×10−4 neutrons/cm2/sec, until the time T when it is first greater
than or equal to the exposure E produced in 3. Return T .

The predictive distributions in Figure 5 appear somewhat similar to the exponential

distribution in shape, but they are actually quite a bit more heavy tailed. This is because

the hazard function uncertainty is included in these distributions, so they are actually

more similar to an exponential distribution with a random rate (they would be exactly

that if the hazard was assumed constant in our model).

The caption of Figure 5 provides the approximate posterior median of the mean time

to failure (MTTF) or mean time to SDC (MTTS), along with 95% CIs for the MTTF

(or MTTS) for each case. The posterior median and CIs for the MTTFs are produced

by calculating the mean of the time until failure (or SDC for MTTS) distribution (by

numerical integration) for each of 10,000 draws from the posterior distribution parameters

as in steps 1 and 2 of Algorithm 1.

Further, the modeling results were used to estimate the predictive distributions of

time until failure and time until SDC for a single Triblade and for the 180 compute

Triblades in a single connected unit (CU) (Roadrunner is composed of 17 CUs); see

Figure 6. These distributions only incorporate hardware in the Cell and the Opteron

beampaths, so do not include all hardware in a Triblade. Specifically, independence of

the errors occurring at the four different beam aims, whether Opteron (one for each of
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Figure 5: (a) Predictive Distribution of the Time until a Failure for all hardware in the Cell
beampath. The posterior median for the mean time to failure (MTTF) is 2.42× 105 days with
a 95% CI of (0.79, 4.52)× 105 days. (b) Predictive Distribution of the Time until a Failure for
all hardware in the Opteron beampath. The posterior median MTTF is 4.43 × 104 days with
a 95% CI of (1.42, 13.62) × 104 days. (c) Predictive Distribution of the Time until a SDC for
all hardware in the Cell beampath. The posterior median for the mean time to SDC (MTTS)
is 5.83× 106 days with a 95% CI of (1.60, 19.48)× 106 days. (d) Predictive Distribution of the
Time until a SDC for all hardware in the Opteron beampath. The posterior median MTTS is
3.49× 105 days with a 95% CI of (0.92, 14.10)× 105 days.
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the two Opterons in the LS21 blade) or Cell (one for each of the two Cells in the QS22), is

assumed. Therefore, the hazard functions for these four distinct aims are added together

to obtain an approximate hazard for an entire Triblade. Independence among Triblades

is assumed to get an overall hazard function for a CU in a similar manner.

The distributions for exposure until failure and SDC in Figure 6 were generated in

the same fashion as in Algorithm 1, except that the hazard for simulating E in step 3

is obtained by adding up the respective hazards for the four different beam aims to get
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Figure 6: (a) Predictive Distribution of time until a Failure for one Triblade. The posterior
median MTTF is 1.87 × 104 days with a 95% CI of (0.59, 5.17) × 104 days. (b) Predictive
Distribution of of time until a Failure for one Roadrunner CU. The posterior median MTTF is
92 days with a 95% CI of (37, 182) days. (c) Predictive Distribution of time until a SDC for one
Triblade. The posterior median MTTS is 1.62 × 105 days with a 95% CI of (0.42, 4.58) × 105

days. (d) Predictive Distribution of of time until a SDC for one Roadrunner CU. The posterior
median MTTS is 796 days with a 95% CI of (258, 2448) days.
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the hazard for a single Triblade. The hazard to generate E for a CU (180 Triblades)

is obtained by drawing parameters as in step 1 of Algorithm 1, but then each of 180

Triblade hazards are calculated with a different random Triblade effect from step 2 (all

180 of these are drawn from the value of τ drawn in step 1). These 180 Triblade hazards

are then added together to get the hazard to generate a failure time for a CU (and

analogously for generating SDCs).

As mentioned earlier, these distributions reflect the approximate neutron flux in Los

Alamos, NM, and are subject to errors due to beam fluence measurement inacurracy, as
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well as any potential lack of model fit. The Triblade and CU time to failure and time to

SDC information is extrapolated from the neutron beam testing and does not represent

observed cosmic-ray-neutron-induced failures or SDCs in the Roadrunner supercomputer

(such data are unavailable).

Even with the large uncertainty, these results indicate that a failure on a CU is very

likely to occur within six months, and we would expect failures to occur roughly once

every three months. An SDC would be expected to occur on a CU every 26 months,

and it is very likely for an SDC to occur on a CU within four years. On the other hand,

SDCs could be occurring on a CU as often as once every eight months according to these

results Of course, these results are specific to the vpic code and and all other conditions

during the testing, e.g., angle of incidence of the neutron beam, fluence measurement

accuracy etc., as well as to all of the modeling assumptions.

5 Conclusions

Accelerated neutron beam testing was performed on components of Roadrunner to assess

the importance of certain variables on the effects of cosmic-ray-induced neutrons on

the system. A novel statistical approach for the analysis of interval censored survival

data with mixed effects and uncertainty on the interval endpoints was developed for the

analysis of these data. A key result is that the system has a substantially elevated hazard

(∼ 6×) when the beam was aimed at Opterons as opposed to Cells. Estimates based

on this accelerated testing of the distributions of failures and of SDCs in actual clock

times for the neutron flux in Los Alamos were provided at the component level (Cell

beam aims or Opteron beam aims), Triblade, and a Roadrunner CU. Results indicate an

estimated mean time to failure for a Roadrunner CU of about 92 days, and a mean time

to SDC of about 796 days, with roughly an order of magnitude of uncertainty around

these estimates.
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A Supplementary Material: MCMC Algorithm

The description below is written for the most general case of the methodology. All

parameter values are initialized at the mode of the prior distribution, then the following

steps are repeated until an adequate number of posterior samples have been obtained for

convergence and inference.

MCMC Algorithm.

1. For each fixed effects factor l = 1, . . . , gf , update βl = {βj : j ∈ Jl} simultane-

ously with Metropolis Hastings (MH). The proposal β∗l given the current value βl
is generated for each j ∈ Jl according to

β∗j =

{
ρ∗f,lZ

∗
f,j if βl = 0

%∗f,lT
∗
f,j otherwise,

(A1)

where ρ∗f,l ∼ Bernoulli(π0,1), %∗f,l ∼ Bernoulli(1 − π1,0), Z∗f,j
ind∼ N(0, ḃ2j), T ∗f,j

ind∼
βj + σf,jt(νf,j), t(ν) is the t-distribution with ν degrees of freedom, and π0,1, π1,0,

σf,j, and νf,j, j = 1, . . . , p are control parameters that are adjusted to obtain good

mixing. Here the following values are used: π0,1 = 1, π1,0 = 0.25, all νf,j = 10 and

the σf,j range from 0.15 to 0.50 to encourage ∼30% acceptance of β∗l when βl 6= 0

and %∗f,l = 1 in accordance with the recommendations in Roberts, Gelman & Gilks

(1995) and Gelman, Carlin, Stern & Rubin (2004).

For each random effects factor l = 1, . . . , gr, update γ l = {γk : k ∈ Kl} and

λl = {λk : k ∈ Kl} simultaneously with MH. The proposals λ∗l , γ
∗
l given the

current values λl, γ l are generated for each k ∈ Kl according to

λ∗k =

{
ρ∗r,lC

∗
l if λl = 0

%∗r,lU
∗
l otherwise,

γ∗k =

{
Z∗r,kI{λ∗k>0} if λl = 0
T ∗r,kI{λ∗k>0} otherwise,

(A2)

where ρ∗r,l ∼ Bernoulli(π0,1), %∗r,l ∼ Bernoulli(1 − π1,0), C∗l
ind∼ HC(ḋl), U∗l

ind∼
exp{log λk+ ςlt(ιl)}, where t is the student’s t distribution, Z∗r,k

ind∼ N(0, λ2k), T ∗r,j
ind∼

γk + σr,kt(νr,k), and π0,1, π1,0, ιl, ςl, l = 1, . . . , gr, σr,k and νr,k, k = 1, . . . , q are

control parameters. The following parameter values are used: π0,1 = 1, π1,0 = 0.25,

ιl = 10, ςl = 0.25, νr,k = 10 and σr,k anywhere from 0.15 to 0.50 to encourage
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∼30% acceptance of λ∗l , γ
∗
l when λl 6= 0 and %∗r,l = 1.

2. Update each φm, m = 0, 1, 2, with MH. The proposal φ∗m given the current value of

φm is generated according to

φ∗m ∼ φm + σφmt(νφm) (A3)

where σφm and νφm, m = 0, 1, 2 are control parameters, set in this application to

σφm ≈ 0.5 and νφm = 10 to encourage ∼30% acceptance.

3. Update g0(ω) with MH. The proposal g∗0(ω) given the current value of g0(ω) is

generated according to

g∗0(ω) = g0(ω) + σg0N(0,Σ) (A4)

where σg0 is a control parameter that is set in this application to 0.05 to encourage

∼30% acceptance.

4. Update τ with MH. The proposal τ ∗ given the current value of τ is generated ac-

cording to

τ ∗ = exp{τ + στ t(ντ )} (A5)

where στ and ντ are control parameters that are set in this application to 0.5 and

10, respectively, to encourage ∼30% acceptance.

5. The distribution of κ given the other parameters and the data is Gamma(aκ, bκ),

with

aκ =
n∑
i=1

(Nf,i +Nb,i + ḣ1)

bκ =
n∑
i=1

(
202Ci(0)

(20 + vf,i)2
+

202Ci(0) exp{−0.1185α}
(20 + vb,i)2

+ ḣ2

)
. (A6)

Thus, an updated value for κ is generated according to κ ∼ Gamma(aκ, bκ).

6. The distribution of αr r = 1, 2, 3, 4 given the other parameters and the data is

Gamma(aαr , bαr), with

aαr =
n∑
i=1

(
Nb,i +

µ2
α

σ2
α

)
I{ri=r}

bαr =
n∑
i=1

(
202κCi(0)

(20 + vb,i)2
+
µα
σ2
α

)
I{ri=r}, (A7)
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where I{x=y} is the indicator function, returning 1 if x = y, and 0 otherwise. Thus,

an updated value for αr is generated according to αr ∼ Gamma(aαr , bαr).

7. Update µα with MH. The proposal µ∗α given the current value of µα is generated

according to

µ∗α = exp{µα + σµαt(νµα)} (A8)

where σµα and νµα are control parameters that are set in this application to 0.25

and 10, respectively, to encourage ∼30% acceptance.

8. Update σ2
α with MH. The proposal σ2

α
∗

given the current value of σ2
α is generated

according to

σ2
α
∗

= exp{σ2
α + σσ2

α
t(νσ2

α
)} (A9)

where σσ2
α

and νσ2
α

are control parameters that are set in this application to 1.5 and

10, respectively, to encourage ∼30% acceptance.
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